Translate

Showing posts with label Roof Insulation. Show all posts
Showing posts with label Roof Insulation. Show all posts

Thursday, April 5, 2018

Insulating A Roof

Who says it is OK to foam a roof, for any odd contractor or home owner? We should fear roof rot within twenty years, unless foaming is with perfect completeness and perfect maintenance, forever, of a vapor barrier over the expanded living space. No one can offer that guarantee. A roof, foamed, rotted, is ruined. 

Instead, Raise The Roof. Look for agreement with the statement "raising a roof does better weatherization than insulating the roof ." Practically, it is less a quest to save energy if a bungalow attic has been converted to living space, and is uninhabitable especially in Summer. Claim comfortable living space, and more of it.




































Raise a roofThen weatherize an ordinary attic . Be smart though, about second floor spaces outboard of new and existing attic walls. The excellent builder here sealed none of the large openings between not-conditioned floors, and the walls and ceilings below. Whimsical bungalows will remain challenging of weatherization. Simple cape construction has much hope of rewarding and fairly easy cures, in modified roofs.




















As a weatherization contractor working alone, and not as manager of a crew, I have insulated a roof, only a few times. Foaming a roof is not an option, in my opinion. The task with batts is a serious one and will usually be only-wishful thinking of a home owner. As growth of weatherization activity it is not likely in one's budget.

I want to illustrate my general approach, and immediately think of this example of a nice home in the prosperous Irvington neighborhood of Portland, Oregon. The link is a Google Photos album.

This afterthought child's play room in a kneewall closet, was cozy only a few months each year. It was mostly uninsulated, drafty, intolerable in high Summer and deep Winter. Here I begin demolition of flimsy paneling. The work followed thorough insulation of the upper attic and all  other kneewall closet floors, with imperfect treatment of all challenging heat bleeds of bungalow construction. Work done in 2008 is reported here in 2018, as example of best-effort coping with difficult-to-insulate bungalow construction, vs. better practice of raising the roof as an ordinary attic over a full second floor.

My method is durable, unlike found flimsy layup of paneling with nails. And yet, it is not honest treatment of all second floor heat bleeds.

Brittle stiff paper behind the paneling removed, a surprisingly full fill of cellulose on this gable wall only, tumbles down. See that insulation blown from outside with ending any hope the exterior sheathing is air tight, failed to treat very leaky non-insulation about the rough frame of a remodel vinyl window. Insulation was almost entirely bypassed by convection and large leakage-movement of conditioned air, between buckled stiff felt paper, and the flimsy wood-panel sheathing of the knee walls and ceiling.











See that I had previously insulated the ordinary floor of the upper attic, and had air sealed and stuffed floors of knee wall closets.





















I am quite displeased with my leaving of perhaps-useless paper-faced mineral wool batts upon the second floor attic walls.





















See my placement of R15 kraft-faced batts with full filling against roof sheathing. In 2x4 space thinner insulation as with joke "R13" - - must not be commanded to cool  the roof. Allowed convection in foolish and ineffective deference to composition shingle warranty, ruins any insulation value. R15 was little enough, to be achieved. See that some odd roof pitches challenge the imagining of how to place batts.  Did I do right?
 























Know now that the kraft facing is nearly useless as an air and vapor barrier. I want both.




























Apply then, Tenoarm 6-mil virgin polyethylene vapor and air barrier. Lose my shirt with the immense difficulty of setting strong GP Densarmor drywall. Accept meager payment that was larger than the customer wished. Learn that the room was nice for a family with a little girl, now grown. A heat bleed remains in the triangular wall to left in the photo above, where a difficult, expensive trapezoidal door, was not afforded although framing of the door was provided, just needing a cut through the drywall.

Might the new home owner now wish to raise the roof, for more living space, in a home where rent-out of portions is in great demand?

Friday, November 15, 2013

Working With Cotton Insulation Batts

Out of necessity for a customer, I have gained lessons in the usefulness of UltraTouch cotton batts in residential weatherization. Here is a sharing of those lessons.

The owner of the reported home aimed to be best green, in needful improvement of insulation, in Fall, 2008. Then, and now, UltraTouch denim batts by Bonded Logic, Inc., offers
impressive claims.
UltraTouch™ Denim Insulation is the successful combination of 35 years of insulation experience and a revolutionary patented manufacturing process that has created a superior and safe product.
UltraTouch is made from high-quality natural fibers. These fibers contain inherent qualities that provide for extremely effective sound absorption and maximum thermal performance. UltraTouch has No Fiberglass Itch and is easy to handle and work with. UltraTouch contains no chemical irritants and requires no warning labels compared to other traditional products. There are no VOC concerns when using UltraTouch, as it is safe for you and the environment.
UltraTouch is also a Class-A Building Product and meets the highest ASTM testing standards for fire and smoke ratings, fungi resistance and corrosiveness. UltraTouch™ Denim Insulation contains 80% post-consumer recycled natural fibers making it an ideal choice for anyone looking to use a high quality sustainable building material.
UltraTouch makes installation user-friendly. The inclusion of perforated batts allows for quick and easy off-size cavity installation. Simply measure, tear, fit and you're done!.

Many bags of UltraTouch R30 in size 23"x48" were purchased, for placement in the crawl space, by a hired top-notch weatherization  contractor, and for the attic, to be placed by the home owner. Things did not go well, with more than $8000 paid to the contractor, and more money tied up in mis-applied  or stockpiled cotton batts, by the home owner. All for little, if any, saving of energy. The home owner was responsible for misunderstanding how to insulate an attic, but was misled by the bad example of the contractor's work in the crawl space, and couldn't find guidance anywhere.

In reporting here, I intend to be useful to contractors and their management authorities everywhere. I hope to also get the attention of batt manufacturer Bonded Logic, Inc.. Bonded Logic may not sell product with no responsibility to advise in competent usage. From an experience here, consumers should learn that benefit from cotton batts is not easily obtained. There are many ways to use them inappropriately. Cotton batts are not uniquely "green;" in that deserving slack over misuse. Search, that now readily finds this blog post, nets little other help, and finds a lot of condemnation. Cotton batts are useless placed alone as wall insulation, where they can't adjustably fill cavities, and cavities not full may have no effective insulation. The recently-added Bonded Logic brag of perforated batts  is empty. Batts still will not fill a wall on thickness, and perforations will likely be at unlucky widths. 

Here, I find pretty decent usage of cotton batts in an attic floor as top layer with flexible fill-in of fiberglass, liking that they tolerate being walked upon. In a crawl space, after a lot of work, I guess they are ok.

Photos that follow are drawn from a Web album with similar captions:

Repairing The Installation Of Cotton Insulation Batts In An Attic and In A Crawl Space 



The attic treatment of cotton batts began with taking down batts unwisely hung from roof joists. After a couple of years, mold was starting to grow above the batts, at the underside of the roof sheathing. Batts were wet.













Cotton batts dropped from roof joists and brought up new, would cover about three quarters of the attic floor.
Top up an R21 insulation base layer using new R11 batts. Supplement R30 cotton batts crossing floor joists, with R30 fiberglass batts. Protect all soffit vents with plywood baffles, and place R30 all the way out to cover exterior wall headers.

Note a Romex electrical wire here, correctly running over, not through floor joists. With thick insulation, electrical service should be permitted by simply lifting top-course batts.











Plywood decking is very important to work access. Plywood is raised 5" above floor joists, upon new 2x4 uprights 24" oc.















Furnace return air ducts are covered with R21 insulation, minimum, including a firm skin of poly skrim kraft upon R11 basement wall insulation. Duct insulation is tucked into top layer batts, or is screwed to plywood decking.










With the blocked access, the home owner was concerned about the placement of the crawl space batts. The batt installer, after days of awful work in this, would not be confronted.  Thinking things weren't right, the home owner chose to forego a rebate claim, and didn't know what to do for resolution.



















In the course of attic work, I inspected the crawl space. I reported that, as expected, the twined-up batts were sagging everywhere, only in contact with flooring in lines at edges. Full floor contact is mandated by regulating authority, Energy Trust of Oregon, ETO. Their rule stated:


Insulation shall be installed so that there is no air space between the top of the insulation and the floor.



Unacceptable work is not eligible for rebate, so a rebate now would give the home owner some compensation for the cost of needed repairs. The installer refused to accept any responsibility in this, but we will see what happens in review after the repairs.

In time, I devised a repair plan, posted for more than a year, and shared for comment with responsible parties, manufacturer Bonded Logic, Inc. and regulator Energy Trust Of Oregon. There was no thinking or standing up with me for the interest of the home owner.

This is the actual method of tying up crawl space batts that I had to work with. Batts were generally in pairs of matched 48" length, one 23" wide, the other somehow sawn 21" wide. The twine was fairly useful near to floor joists, and I left it in place. At about every 9" on average, in the slot between batts, I stapled up a loop of 17ga electric fence wire about 20" long, thus:























The battens typically were cut to 43" lengths. I used about 200 eight-foot lengths, costing $1.79 each. The lumber cost is significant.





















Now consider how this might have been done, starting with new batts. I think each batt might be thrown up, upon a 2x3 or 2x4, to then be progressively secured higher-up, with wire and battens. The wires might be preset on other wire or lumber, adding to material cost but saving labor.
































































The same number of battens are needed whether or not there is benefit of prior twining. Lumber cost here remains about $400. 

There is a nicer solution that has higher material cost, but would be superior overall:



Complete coverage with 3/8" CDX plywood sections costs about $15 for each eight-foot length of joist bay. Four eight-foot 1x2 battens in the same service would cost about $7. The lumber cost is doubled, but the isolation of insulation is a good deal, that should be mandatory. No insulation anywhere, not even on an attic floor, should be left raw, to be abused. Reduced labor costs might more than compensate for plywood cost. Where insulation is already hanging down but is not foul, this is a really good solution.













Home Performance Education For The Determined Or Advised Reader

The situation of waste found in this home had existed for nearly three years.  

Enter then, myself, first for the attic work. I was discovered through new home owner membership in Angie's List. Already in Fall, 2011, I had been banished as a Trade Ally of Energy Trust of Oregon, and could not be found among the "players." Banishment for a year, but now seemingly forever, was for reporting to each customer the things I do, that are not done by those within the embrace of Energy Trust, contractors who brag upon the lies and malpractice of "Home Performance With Energy Star," HPwES. 

The problems with HPwES begin with the basic lie in USA, that a blower door is the guide and measure of weatherization progress. As guide, in eight years of ever more-professional service, I have never seen a situation needing guidance of a blower door. As measure, achievable sealing rarely has value of more than $20 per year. A contractor who tells a home owner that blower door readings will guide and measure weatherization is a fool or a liar. Again and again, I challenge those contractors who submit to this scam and national scandal, to contradict my complaint. They do not and can not.

I have repaired many large energy bleeds not at all detectable by a blower door. Most attic floor pits, as with the generally-found chimney chase, have little effect on blower door readings. Where the goal is real or jiggered improvement of blower door readings, by hundreds of CFM50,  correction of floor pits is not rewarded.  

Even where they might affect blower door readings, bleeds are almost never found that way. The clean-shirted technician can not and will not be in the usual dark and dangerous attic while his blower door is operating, and therein is some revelation of the lying. It isn't just lying. It is costly ignorance. Workers will rarely take initiative to fix the things they might see and care about, of course unknown to the clean-shirted liar, then not in a contract. Buried problems usually have much higher opportunity cost, than any benefit from that which does the hiding. Rather, every job must have a graphic register of all the things fixed by the needed visual discovery, demonstrating demand of worker initiative, to entitle any public support.

It is good in the demonstration of alternative work in disdain of HPwES, that the involved contractor was and is, at the top tier of contractors managed by Energy Trust. This contractor has failed to acknowledge any errors. There was a well-intended confrontation about wrongful setting of an interior door in a blower door test and consequent mis-reporting of sealing results, and failure to accomplish the reported sealing. Later there was confrontation about useless crawl space insulation, where I believe the manufacturer and this contractor have cost liabilities. No such liabilities are yet admitted. I am backed up by Energy Trust, in offer of the deferred crawl space (floor) insulation rebate, now earned.

Among issues that could be seen and expressed, the home owner was very upset by ugly and useless "sealing", as characterized by this crude aerosol orange foaming about the exhaust duct of the kitchen microwave, in a kitchen cabinet. 


















The conditions of unacceptable sealing found, and their repair, can not be summed up in a few photos. For the detailed story of sealing, please download and study a large pdf album:

Real Sealing Fixes HPwES Sealing In An Oregon Attic 

In this home, I infer incompetence at best, in the conduct and reporting of blower door and duct blaster measurements.










Where CFM50 = 7.5 * (Hole Size, sq in), total ducts hole size is 71 sq in., as with more than two 6" ducts (28 sq in each) fully detached. If workers found two duct sections detached, and reset them without comment, that is not duct sealing action of goop troops. It should not count. If ducts can fall down, then how could workers justify leaving the crawl space inaccessible after their departure? Leakage of 205 CFM50 is still huge, and should not be allowed. None of the steel ducts were found or left with required screws. Nearly all joints, now stiffened with goop, remained closed by dried-out ordinary duct tape. This was not duct sealing by some scientific process, and was not worthy of compensation. Most of the involved money should be reclaimed to compensate the home owner for the cost of my fully replacing the ducts, needfully and with courage, restoring access for extremely difficult work in the crawl space.










I don't believe sealing actions could have amounted to more than a few hundred CFM50. A 100 CFM50 reduction is closure of 13 sq in, a total equivalent hole four inches diameter or a gap 1/16" wide and 18 ft long. The great majority of reported reduction was from knowing fraud in devising a to-be-closed air handler room yet attic floor pit, with a gasketed new door. It is not allowed that an interior door may be closed in pre or post "Home Performance Testing." The door was a mystery to the home owner, perhaps to be closed for convenience.

This was my third run-in with this contractor, where I did the real sealing. In one, there were a car-bashed large hole in the garage wall, hidden behind a woodpile, and two closets with large leakage to outside controlled by closing doors; of course none found by blower door.

No one does better sealing of an attic floor or HVAC ducting than I do, with absolute disdain for fraud of Home Performance. I find problems as one must, digging down and dirty, by sight. I don't just reduce duct leakage. I methodically eliminate it, verifiable by sight as I go, and in method-sampling photos.

Here is discussion of my improvement of the crawlspace HVAC ducts in this home:
http://energyconservationhowto.blogspot.com/2013/11/more-hvac-circuitry-in-crawl-space.html 







The ugly obstructions beginning at the access hole are gone! Repair of the cotton-batt insulation could only be done after removing the found HVAC ducts for recycling. Quite a pile. Hundreds of pounds of steel that had responded to every furnace cycle .










A system of handing out weatherization incentives that excludes my diligence is criminal. A customer who understands this, cares, and is willing to pay for fixing of messes, is very rare, and is a treasure to those who would learn through my experiences.


Thursday, January 8, 2009

Kneewall Closet Air Barrier

This kneewall closet was to be insulated in compliance with new Energy Trust of Oregon requirements as follows:
Kneewall insulation, whether new or pre-existing, shall be covered with a durable, vapor permeable air barrier material to prevent air penetration of the insulation, and to ensure that the insulation is held in full contact with the wall cavity. Air barrier material shall be tested and labeled to meet Oregon fire protection standards. The air barrier material shall be permanently fastened so that it supports the kneewall insulation.

Insulation and drywall on the kneewall would suffice, but this closet is large enough to offer useful storage. With a complete envelope of insulation and house wrap, the space is conditioned, and the door is no longer challenged by cold and drafts. The floor is stuffed with a maximum of insulation.

House wrap is tried here as an economical barrier method. If durable and cheerful enough, it avoids a larger cost for drywall. This installation enclosing the outer wall and sloped ceiling (roof joists) has tight overlap of wrap with stapling at end walls, and only one other seam, sealed with Tyvek tape.

I have been confounded by the covering requirement, added by Energy Trust of Oregon without explanation or prior discussion with affected contractors. Technical support at Johns Manville denies that house wrap will have measurable effect on insulation R-value. I accept that there are two objectives. First Objective: blocking air infiltration if the kneewall lacks another air barrier, as without complete interior drywall and gasket sealing of access doors. Second Objective: as stated at the first page of the ETO Specifications, there is concern for occupant exposure to insulation fibers:
Insulation installed and receiving an incentive from the Home Energy Solutions (HES) program in attics, basements, garages, storage areas, or other areas where occupants go for routine maintenance or storage (Human Contact Areas), shall be covered with a vapor permeable air barrier to limit occupant exposure to insulation fibers. Unless a barrier (such as a wall) exists, fibrous insulation shall be covered. Fibrous insulation used as a dam around storage areas in attics shall be covered and extend at least sixteen inches from storage area. Attic hatches and knee wall-access doors insulated with fibrous insulation shall also be covered. All covering shall meet applicable codes.

The first objective might not dictate wrap on the outer wall or the sloped ceiling, and would apply whether or not the closet would ever be occupied. With this objective, there is concern that wrap is complete, with tape that securely seals all overlap. The Tyvek tape failed in this service, under blower coor conditions. See added comment below. It's adhesion is WIMPY. Surely all Tyvek tape should be recalled, as demands of adhesion are even greater for exterior use under siding. Johns Manville makes a tape for compatibility with its Gorilla Wrap, called JM SealIt, but my supplier does not stock it, and I could not buy it on my own. My supplier stocks Gorilla Wrap only in response to the new kneewall rules, and this suggests other installers are not taping seams or overlap. I don't yet know how I will respond to liability to my customer, for failed tape.

The second objective would dictate wrap only in a utilized closet, but on all insulation surfaces.

With either argument, air should be blocked in all kneewalls, even where access outside the kneewall is difficult. Where access is difficult, I think it would be better to just ensure the kneewall is air-tight on inside wall surfaces, as with drywall replacement of leaky paneling.

I have another concern related to the kneewall ruling. Often there are wall areas accessible on the outside, within an upper attic used for storage. It is painful to not find incentive to insulate those walls to R21 or more, with two layers, one crossing and covering wall joists. With encouragement to do this, would there be demand of outside covering with air barrier material?

If exposure to insulation fibers is the principal concern, what of floor insulation in an upper attic? I brought covering of attic-floor insulation into my discussion of house wrap, with Johns Manville technical support. I thought I might learn that floor R-value is diminished, especially with low-density loose-fill insulation, without a covering air barrier. A lid on that discussion is closed. I still entertain thought of laying manageable pieces of house wrap on an attic floor, especially as a block of loose-fill, whereby covering fiberglass batts, during handling, would not dirty their surroundings. I have much concern about fibers with cellulose and rock-wool insulation, and almost none with dense Johns Manville batts. I think the concern might serve to ban cellulose and rock wool as insulation in an attic floor.

By my trial (photo) I have illustrated confusion in the ETO Specifications. With this report, I ask for clarification. In the absence of clarity, I have foregone several jobs involving kneewalls.

At March 27, 2009, I add these comments:
Draft 2009 specifications from Energy Trust do not clarify intent of air barrier material. I think the ruling is still misdirected at covering insulation fibers so they won't be breathed. My observation of the failed tape seam in the closet described here, under minus 50 pascal blower door conditions, is that draft IS the issue. Tape releases under any pressure differential if an overlap is not tightly pinched. Often in unusable spaces of bungalow homes, the wall of the "bonus room" is gapped paneling. A tight air barrier is hard to achieve, especially where there is not a lower, outer kneewall, in tiny closets. Still, I will try, with use of more-agressive tapes. I do now have a roll of Johns Manville Gorilla Wrap tape. It is just 1.89" wide, hard to aim onto an overlap seam, and looks like the Tyvek tape. I doubt I will even test it. Certainly in the closet described here, added drywall will be the best solution, and housewrap was not needed. In tiny never-accessed closets, air sealing attempts outside kneewalls will fail. There, the correct solution is replacement or overlay of paneling, with good drywall.

At 1/24/2010 I add discovery of more history in the unexplained ETO rule. The Building Performance Institute, BPI, weighed in on this, in 2003. They say:
Insulation installed in kneewalls or other exposed vertical areas must be covered on the cold side with an air barrier such as plywood or housewrap to protect the insulation from wind-washing and free convection within the insulation. This measure is not necessary if rigid foam insulation is used.
To BPI, the issue is insulation effectiveness. They believe air stilling in insulation improves its effectiveness. I'm inclined to agree, but am overruled by experts at Johns Manville. They claim (wrongly I accuse) that even loose-fill insulation on an attic floor would have exactly the same thermal performance whether or not there is a covering that might still the contained air.


At 3/21/2010, I direct the reader to Southface.org interpretation, and my related experiments:
http://sites.google.com/site/phillipnormanatticaccess/Home/r30-knee-wall.


At 11/16/2010, I report condition of the house wrap in this little-used closet.  All Tyvek housewrap tape has released. The customer still does not want to apply drywall, and I promised to just repair the one fallen-down panel. I will apply 3" width Vapor-Bond tape, by Americover.